home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-06-05 | 3.6 KB | 154 lines | [MATS/MATL] |
- echo off;
- % NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1994
- % To accompany the text:
- % NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
- % Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
- % This free software is complements of the author.
-
- % Algorithm 6.3 (Differentiation Based on N+1 Nodes).
- % Section 6.2, Numerical Differentiation Formulas, Page 342
- echo on; clc; format long; hold off; clear
-
- % This program differentiates a Newton polynomial approximation.
- % n+1 are points needed to construct Pn(x).
-
- % The abscissas are stored in X.
- % The ordinates are stored in Y.
- % The points are counted k = 1,2,...,n+1.
-
- % The example investigates f(x) = cos(x) using 5 nodes.
-
- % The derivative is approximated at X(1).
-
- % The function f(x) is stored in the M-file f.m.
- % function z = f(x)
- % z = cos(x);
-
- delete f.m
- diary f.m; disp('function z = f(x)');...
- disp('z = cos(x);');...
- diary off;
-
- f(0); % Remark. f.m and diffnew.m are used for Algorithm 6.3
-
- pause % Press any key to continue.
-
- clc;
- % Place abscissa for differentiation in x0.
-
- % Place the endpoints interval [a0,b0] about x0 in a0 and b0.
-
- x0 = 0.8;
-
- a0 = 0;
-
- b0 = pi/2;
-
- pause % Press any key to graph the function.
-
- clc; clg;
- y0 = f(x0);
- hs = (b0-a0)/100;
- Xs = a0:hs:b0;
- Ys = f(Xs);
- a = 0;
- b = 1.6;
- c = 0;
- d = 1.1;
- axis([a b c d]);...
- plot(x0,y0,'o',Xs,Ys);...
- hold on;...
- plot([a b],[0 0],'b',[0 0],[c d],'b');...
- xlabel('x');...
- ylabel('y');...
- title('y = f(x) and the given point');...
- grid;...
- axis;...
- hold off;...
- shg; pause % Press any key to continue.
-
- clc;
- % Place abscissa for differentiation in x0.
-
- % Place the number of points in n.
-
- % Place the step size in h.
-
- x0 = 0.8;
- n = 5;
- h = 0.01;
- X = x0:h:x0+(n-1)*h;
- Y = f(X);
-
- [A,df] = diffnew(X,Y);
-
- pause % Press any key to continue.
-
- format short;
- Mx0 = 'Approximating the derivative by differentiating a Newton polynomial.';
- Mx1 = 'First construct the Newton approximation polynomial.';
- Mx2 = 'The abscissas are:';
- Mx3 = 'The ordinates are:';
- Mx4 ='The coefficients for the Newton polynomial are:';
- Mx5 = 'The centers for the Newton polynomial are:';
- clc,echo off,diary output,...
- disp(''),disp(Mx0),disp(''),disp(Mx1),disp(''),disp(Mx2),disp(X),...
- disp(Mx3),disp(Y),disp(''),disp(Mx4),format short,disp(A),...
- disp(Mx5),disp(X(1:n-1)),diary off, echo on,format long
-
- pause % Press any key to see the approximate derivative.
-
- clc;
- X1 = [a b];
- C = [df f(x0)];
- Y1 = polyval(C,X1-x0);
- axis([a b c d]);...
- plot(x0,y0,'or',Xs,Ys,'-g',X1,Y1,'-r');...
- hold on;...
- plot([a b],[0 0],'b',[0 0],[c d],'b');...
- xlabel('x');...
- ylabel('y');...
- title('The tangent line has slope m = f`(x0).');...
- grid;...
- axis;...
- hold off;...
- shg; pause % Press any key to continue.
-
- Mx1 = 'Numerical approximation for the derivative.';
- Mx2 = ['f`(',num2str(X(1)),')'];
- Mx3 = ['P`(',num2str(X(1)),')'];
- Mx4 = [Mx2,' ~ ',Mx3,' = '];
- clc,disp(''),disp(Mx1),...
- disp(''),disp(Mx4),disp(df)
-
- pause % Press any key to zoom in.
-
- a = min(X)-3*h;
- b = max(X)+3*h;
- c = min(Y)-3*h;
- d = max(Y)+3*h;
- X1 = [a b];
- C = [df f(x0)];
- Y1 = polyval(C,X1-x0);
- axis([a b c d]);...
- X0 = X(2:n);...
- Y0 = Y(2:n);...
- plot(x0,y0,'or',X0,Y0,'og',Xs,Ys,'-g',X1,Y1,'-r');...
- hold on;...
- plot([a b],[0 0],'b',[0 0],[c d],'b');...
- xlabel('x');...
- ylabel('y');...
- title('The tangent line has slope m = f`(x0).');...
- grid;...
- axis;...
- hold off;...
- shg; pause % Press any key to continue.
-
- Mx1 = 'Numerical approximation for the derivative.';
- Mx2 = ['f`(',num2str(X(1)),')'];
- Mx3 = ['P`(',num2str(X(1)),')'];
- Mx4 = [Mx2,' ~ ',Mx3,' = '];
- clc,echo off,diary output,...
- disp(''),disp(Mx1),...
- disp(''),disp(Mx4),disp(df),diary off,echo on
-